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Abstract. Electronic structures for Mg, Zn and Cd have been completed using the linear 
muffin tin orbital method. The results include plots of band structures, Fermi surfaces 
in extended and reduced zone schemes and density-of-states functions. Generally, good 
agreement with some other ab inifio band results as well as with experiment is found for the 
Fermi surface dimensions except for an absence of needles in Zn. 

For the d bands, it is found that in Zn they are localised above the conduction-band 
minimum, while in Cd they lie only partially above the conduction band. 

1. Introduction 

In this paper we present the band structure, the Fermi surface (FS) in extended and 
reduced zone schemes and the density-of-states (DOS) functions for Mg, Zn and Cd. 

The divalent hexagonal close packed (HCP) metals mentioned above are a useful 
basis for the illustration of some of the fundamental concepts of one-electron band 
theory. They are, on the one hand, relatively simple metals in which the detailed form 
of the s-electron conduction bands is largely determined by the crystal symmetry and 
lattice parameters, almost completely independent of the low lying p bands in Mg and 
relatively independent (e.g. in comparison with typical transition metals) by d bands in 
Zn and Cd. Nevertheless, on the other hand, the large variation in the axial ratio c/a 
between the near ideal in Mg and the far from ideal in Zn and Cd (see table 1) makes 
for interesting differences in details of their electronic structure and especially in relative 
dimensions of various elements of FS. 

Especially in the case of Cd c/a is so much greater than v/8/3 (= 1.633) that the 
vertical electron elements (needles) of FS in the third band at point K of the Brillouin 
zone do not exist even in the free-electron model. The free-electron FS for a divalent HCP 
nietal with ideal ratio c /a  is shown in various papers (e.g. Harrison 1962) and it contains 
the following elements: first zone hole pocket around H (cap), second zone hole 
(monster), third zone electrons around r (lens), around L (butterfly), around K 
(needles) and fourth zone electron pockets around L.  The critical value of c/a at which 
these needles disappear is 1.861 which is smaller than the actual value of c/a for Cd 
which is 1.862 (Stark and Falicov 1967, Jones et a1 1968). For Zn c/a is less than for Cd 
and is obtained to be about 1.828 (Stark and Falicov 1967, Trivisonno and Stark 1978, 
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Table 1. Some parameters used in the calculations (in au). 

Mg Zn Cd 

Lattice constants a 6.026 5.026 5.610 
C 9.781 9.188 10.443 
c l a  1.623 1.828 1.862 

Wigner-Seitz sphere radius 3.324 2.884 3.239 

Daniuk 1983); this is less than the critical value so that in the free-electron model these 
needles survive in Zn. 

Extensive studies of the electronic structure of Mg, Zn and Cd have been made. The 
theoretical (e.g. Harrison 1962 (Zn), Stark and Falicov 1967 (Zn, Cd), Borghese and 
Denti 1971 (Zn, Cd), 1974 (Zn), Chatterjee and Sinha 1975 (Mg), Asokamani et a1 1978 
(Mg), Daniuk 1983 (Zn)) and experimental (e.g. Joseph and Gordon 1962 (Zn), Daniel 
and Mackinnon 1963 (Cd), Gibbons and Falicov 1963 (Zn, Cd), Stark 1967 (Mg), 
Ketterson and Stark 1967 (Mg), Kimball et a1 1967 (Mg), Trivisonno and Stark 1967 
(Mg, Zn, Cd), Jones et a1 1968 (Cd), Steenhaut and Goodrich 1970 (Zn), Almond et al 
1975 (Mg, Zn, Cd)) results do not agree with each other even qualitatively (especially 
regarding elements of the FS around L (Zn and Cd) and needles in the case of Zn). There 
are also some quantitative discrepancies regarding some dimensions of the various pieces 
of the FS even in the case of such a simple metal as Mg (see e.g. the results obtained by 
Asokamani et a1 1978). 

The next problem connected with the electronic structure of Zn and Cd concerns the 
position of tightly bound d states. A number of authors (Auluck 1976 (Zn), Borghese 
and Denti 1971 (Zn, Cd), Harrison 1962 (Zn), Mattheiss 1964 (Zn), Stark and Falicov 
1967 (Zn)) concluded that the d bands in these metals lie below the conduction-band 
minimum and that their band structure, as in the case of simple metals, may be very well 
described by the pseudopotential model. Nevertheless, on the other hand, some other 
authors (Borghese and Denti 1974 (Zn), Daniuk 1983 (Zn), Juras et a1 1972 (Zn), 
Moruzzi et a1 1978 (Zn, Cd), Nilsson and Lindau 1971 (Zn)) obtained d bands in Zn and 
Cd above or very close to the conduction-band minimum and consequently they treat 
these metals rather like transition metals. This problem is very important in the inter- 

I \  

Figure 1. Brillouin zone for HCP structure. 
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pretation of some experimental data, e.g. angular correlation of positron annihilation 
radiation, Compton profiles, etc. 

The hexagonal Brillouin zone with the symmetry points is shown in figure 1. 2 and 
X denote the points on the border of the second zone on the T M K  plane (compare this 
with figure 5 where the FS in the extended zone scheme is drawn). Calculation of the 
electronic structure along the ZL line is very important if one wants to obtain dimensions 
of butterflies with high precision (experiments devote a lot of attention to this problem; 
see, e.g., figure 12 of Ketterson and Stark (1967)). However, this line is usually not taken 
into account in band structure calculations. The present situation can be summarised as 
follows. 

(i) According to our knowledge there exist only three theoretical papers on the 
electronic structure of Cd in which quite large approximations are introduced (only in 
one paper by Moruzzi et a1 (1978), where Cd was treated as an FCC metal, were d bands 
taken into account). 

(ii) There are still controversies concerning needles in Zn (see, e.g., Steenhaut and 
Goodrich 1970). 

(iii) There is no theoretical information on FS dimensions along the LZ line for Mg 
(except those by Kimball et a1 (1967)). This line is important if one wants to obtain the 
FS dimensions in the second zone when this surface does not reach the Z point and for 
the description of butterflies which are accurately measured in experiment (Ketterson 
and Stark 1967). The other line important for divalent HCP metals is ZX(see figure 5b). 
If the FS sticks to the Z point , the determination of it on the TMKplane needs calculations 
along this line. 

From the above it is apparent that more complete band-structure calculations for 
Mg, Zn and Cd from first principles are needed in order to investigate them adequately. 

2. Outline of the method 

Our study of the electronic structure of Mg, Zn and Cd is based on self-consistent band- 
structure calculations, using the linear muffin tin orbital (LMTO) method originally 
proposed by Andersen (1975). The linear methods have been shown to be avery efficient 
scheme for determining the electronic band structure (Jarlborg and Arbman 1976, 
Jepsen eta1 1975, Skriver 1984). They are designed for optimal computational efficiency 
at the expense of a slight numerical inaccuracy compared to other ab initio methods. 
The resulting band energies and wavefunctions have proven useful in the interpretation 
of various physical properties. Since they have been described in detail elsewhere we 
will only state their main features. 

This method uses a spherically symmetric potential in the geometry of an overlapping 
Wigner-Seitz sphere, which works especially well in closely packed structure where the 
interstitial volume is small compared to that of the muffin tin. The basis set is corrected 
for the overlapping sphere geometry by including the ‘combined correction terms’. The 
wavefunctions for the valence states are calculated semirelativistically including all 
relativistic terms except the spin-orbit coupling terms (Koelling and Harmon 1977). The 
local density functional theory of Hedin et a1 (1971) is used to determine the exchange 
and correlation contribution to the potential. 

Some of the parameters used in the calculations are given in table 1. 
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Figure 2. Logarithmic derivatives of the radial wavefunctions (solid line) as compared with 
the free electron values (broken curves), as functions of the energy for (a )  Mg, ( b )  Zn, (c) 
Cd . 

3. Results and discussion 

It is known (Loucks 1967, Skriver 1984, Slater 1965) that the analysis of the logarithmic 
derivative of the radial wavefunction of the electron at the Wigner-Seitz sphere 

as a function of the energy gives very useful information about the band structure of a 
given metal. The Wigner-Seitz rule states (see, e.g., Skriver 1984) that an 1 band can be 
formed in the energy range where the logarithmic derivative is negative. Usually, the 
bottom ( E B ) ,  the centre (E,) and the top (ET) of an 1 band are defined as follows: 

D / ( E B )  = 0 D,(E,) = - 1 - 1 D[(E,)  = - X I ,  

The logarithmic derivatives for Mg, Zn and Cd are shown in figure 2 and compared 
with the free-electron results. In this special case the logarithmic derivative can be found 
analytically in terms of spherical Bessel functions: 

The logarithmic derivatives for Mg differ very little from the free-electron values. 
There is an energy shift which is due to the difference of zero energy in the case of the 
spherical Bessel functions and of the actual crystal potential. These energy shifts are 
similar for the s ,  p and d bands and are of no real importance. In Zn and Cd the 
logarithmic derivatives of s and p bands are very similar to those of free-electron values, 
as in the case of Mg. But for d bands there is a completely different behaviour of the 
logarithmic derivatives compared with the free-electron values. Near EF the d content 
in the bands is quite small, and around EF (but not at lower energies) the energy bands 
resemble the free-electron bands. 

From figure 2 we can see that in the case of Zn the centre of the d bands lies above 
the conduction-band minimum. In the case of Cd the centre of the d band lies a little 
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Figure 3. The band structure along the symmetry directions in the Brillouin zone for (a )  Mg, 
( b )  Zn, (c) Cd. 

below, but is very close to, the conduction-band minimum. Nevertheless, the top of the 
d bands lies in the conduction-band region. Let us mention that we also performed non- 
self-consistent LAPW calculations for Cd (as in the paper by Daniuk (1983) for Zn) and 
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Figure 4. The Fermi surface in the extended zone scheme for ( a )  Mg, ( b )  Cd. 

d bands were obtained considerably above the conduction-band minimum. This shows 
that self-consistent calculations are needed if one wants to obtain a proper description 
of d bands. 

In figure 3 we present a more complete set of band-structure results for Mg, Zn and 
Cd along the symmetry directions in the Brillouin zone (see figure 1). 

On the base of the computed band structure (also in general points of the Brillouin 
zone) we obtained the corresponding FS in the extended and reduced zone schemes 
shown in figures 4 and 5 respectively. (We do not present results of the FS for Zn because 
in the scale of the figures presented they are qualitatively the same as for Cd, except for 
very small holes around I: existing in Zn.) 

In the case of Mg results presented in figures 2-5 are similar to the corresponding 
results obtained in the free-electron model, i.e. the FS consists of all elements which 
follow from structure analysis for the ideal ratio c/a. Of course the quantitative dimen- 
sions of the various elements of the FS (given in table 2) differ from those for the free 
electron model. The holes in first and second bands are considerably reduced at the 
expense of the reduction of butterflies and fourth zone electron pockets. This is clearly 
shown in figure 4(a) and is in quantitative agreement with the experimental results of 
Trivisonno and Stark (1978). From the geometric resonance in the ultrasonic attenu- 
ation, Ketterson and Stark (1967) obtained the dimension of butterflies along the LZ 
line equal to 0.206 ? 0.016 au. This is in very good agreement with our result (0.200 au). 
Performing band-structure calculations along a line parallel to T M ,  at a distance of 
0.226 au from it, we obtained kF equal to 0.5175 and 0.592 in comparison with 0.5126 
and 0.5968 for free electrons. This leads to a shape of butterfly similar to the one drawn 
in figure 12 of the paper by Ketterson and Stark (1967). However, in our case the 
reduction along the L M  line is minimal, making their arms more symmetric with regard 
to the LZ line than follows-from Ketterson a'nd Stark's figure 12. In studying the fourth 
zone electron pockets, we did not obtain any difference between them and the butterflies 
along the A L  line (only a very small difference between them and the butterflies along 
the L M  one). This may be due to the fact that spin-orbit coupling was neglected in our 
calculations, 

In contrast to the case of Mg there is quite a strong repulsive d-like interaction in 
both Zn and Cd due to the 3d and 4d states, respectively. That is why their band structures 
are less reminiscent of the corresponding free-electron ones. 
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Figure 5. The Fermi surface in the reduced zone scheme for (a) Mg, ( b )  Cd 

In both Zn and Cd there are definitely no electron states in the third and fourth zones 
around the point L. Such elements appeared in the free-electron model and are predicted 
in some previous calculations as well as from the interpretation of some experiments 
(Cracknell 1971, Dimmock 1971). However, since 1968 it has been believed that they 
do not exist. Quantitative results for the FS dimensions for Zn and Cd are given in table 2. 

As concerns the FS of Zn the presence of the needles around the K point in the third 
band is controversial. They were obtained by Daniuk (1983) (although they were too 
small for him to estimate their dimensions) but they are absent in present calculations. 
The bands connected with them lie considerably above the Fermi level (i.e. about 0.02 
RYd). 
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Table 2. Fermi surface dimensions (in au-I): (1) first band holes; (2) second band monster; 
(3a) third band needles; (3b) third band butterflies; (3c) third band lens; (4) fourth band 
cygars. 

Mg Zn Cd 

free expi  LMTO free expt  LMTO free exp§ LMTO 
~~ 

(1) H A  0.042 - 0.029 0.068 0.147 0.066 0.063 0.057 0.050 
H L  0.096 - 0.039 0.162 0.146 0.099 0.153 0.094 0.078 
HK 0.107 - 0.071 0.251 - 0.257 0.301 - 0.135 

(2) Z L  0.112 0.064 0.063 0.123 - absent 0.111 absent absent 
HA 0.142 - 0.029 0.068 0.057 0.066 0.063 0.059 0.050 
H L  0.096 - 0.039 0.162 0.151 0.099 0.153 0.102 0.078 
rM,, 0.341 0.370 0.369 0.485 0.543 srz 0.442 - - 
TK,, 0.341 0.370 0.369 0.485 0.518 0.531 0.442 0.486 0.516 
TM,,, 0.477 0.476 0.469 0.605 - S T Z  0.547 - - 
TKO,, 0.634 0.622 0.621 0.824 0.819 0.822 0.747 - 0.710 

(3a) KT 0.061 0.067 0.062 0.010 - absent absent absent absent 
KM 0.032 0.033 0.036 0.005 - absent absent absent absent 

(3b) LZ 0.252 0.206 0.200 0.255 absent absent 0.221 absent absent 
L H  0.252 0.184 0.200 0.255 absent absent 0.221 absent absent 
L M  0.087 - 0.082 0.085 absent absent 0.072 absent absent 
LA 0.051 - 0.047 0.044 absent absent 0.037 absent absent 

(3c)  TA 0.085 0.080 0.084 0.155 0.147 0.145 0.145 0.146 0.149 
T M  0.341 0.312 0.320 0.485 0.460 0.441 0.442 0.413 0.389 
T K  0.341 0.312 0.320 0.485 0.460 0.435 0.442 0.413 0.402 

(4) LA 0.051 - 0.047 0.044 absent absent 0.037 absent absent 
L M  0.087 0.043 0.080 0.085 absent absent 0.072 absent absent 
L H  0.252 - 0.198 0.255 absent absent 0.221 absent absent 

t Ketterson and Stark (1967) 
f Steenhaut and Goodrich (1979) 
B Jones et a1 (1968) 

Comparing qualitatively the results obtained by the LAPW method (Daniuk 1983) 
and our LMTO results, the distortion of the FS from sphericity is stronger for the LMTO 
calculations: the lenses in the third zone around the point rX are smaller and there are 
smaller hole surfaces in the first and second Brillouin zones respectively. The FS of Zn 
is qualitatively similar to the one obtained for Cd. The only difference in comparison 
with Cd is the presence, in Zn, of the hole around the point 2.  This hole, clearly observed 
by Trivisonno and Stark (1978), is very small and cannot be visible in the scale of figures 
4(b)  and 5(b). 

In the case of Cd the results obtained by the LAPW and LMTO methods are qualitatively 
the same for FS dimensions. The Z point in the second Brillouin zone is occupied and 
this is in agreement with the experimental data of Trivisonno and Stark (1978). On the 
plane T M K  this causes the hole surface of the monster, being a continuous surface in 
the free electron model, split into six hole surfaces around the points denoted in figure 
1 asX. Quantitative differences for Cd between the LAPW and LMTO methods are similar 
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to those for Zn, i.e. the LMTO method gives more anisotropic FS. The main advantage of 
our present LMTO calculations is that, contrary to our previous ones, they are self- 
consistent including non-frozen core states and that the convergence properties con- 
cerning the number of k points and I ,  m convergence are good. This means that our band 
structure and determination of FS are highly accurate, as long as local density potentials 
are accepted. 

In figure 6 we present partial and total density-of-state (DOS) functions for Mg, Zn 
and Cd. In the case of Mg the total DOS function below EF remains a free-electron 
parabola which is disturbed in the vicinity of EF by a lattice potential. 
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A completely different picture may be observed in Zn and Cd. In particular there 
is a clearly visible narrow contribution to the total DOS function from d states. The 
corresponding (i.e. total and partial) results of DOS functions for Zn and Cd are similar 
to each other, and the most important difference is that the d contribution in Cd lies 
deeper than in Zn. 
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